Search results for " Dopamine D5"

showing 2 items of 2 documents

Metabolic and inflammatory reprogramming of macrophages by ONC201 translates in a pro-inflammatory environment even in presence of glioblastoma cells

2020

Tumor-associated macrophages facilitate tumor progression and resistance to therapy. Their capacity for metabolic and inflammatory reprogramming represents an attractive therapeutic target. ONC201/TIC10 is an anticancer molecule that antagonizes the dopamine receptor D2 and affects mitochondria integrity in tumor cells. We examined whether ONC201 induces a metabolic and pro-inflammatory switch in primary human monocyte-derived macrophages that reactivates their antitumor activities, thus enhancing the onco-toxicity of ONC201. Contrary to glioblastoma cells, macrophages exhibited a low ratio of dopamine receptors D2/D5 gene expression and were resistant to ONC201 cytotoxicity. Macrophages re…

0301 basic medicinePyridinesImmunology610 MedizinGlutamic AcidAntineoplastic AgentsMitochondrionBiology570 Life sciences03 medical and health sciences0302 clinical medicineImmune systemCell Line TumorDopamine receptor D2610 Medical sciencesTumor MicroenvironmentHumansImmunology and AllergyMacrophageReceptors Dopamine D5Tumor microenvironmentReceptors Dopamine D2MacrophagesImidazolesMitochondriaCell biologyGene Expression Regulation NeoplasticPyrimidines030104 developmental biologyDrug Resistance NeoplasmTumor progressionDopamine receptorEnergy MetabolismGlioblastomaReprogrammingTranscription Factor CHOPSignal Transduction030215 immunology570 Biowissenschaften
researchProduct

D1/D5 modulation of synaptic NMDA receptor currents.

2009

Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/D5receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/D5modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/D5receptor activation elicits a bidirectional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Sy…

MaleNeuronal PlasticityGeneral Neurosciencemusculoskeletal neural and ocular physiologyReceptors Dopamine D1Long-term potentiationAMPA receptorNeurotransmissionBiologyReceptors N-Methyl-D-AspartateSynaptic TransmissionArticleMice Inbred C57BLMicenervous systemSynaptic plasticitySynapsesNMDA receptorAnimalsReceptors Dopamine D5Nerve NetReceptorLong-term depressionNeuronal memory allocationNeuroscienceThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct